Complexes of Gold(I) with a Chiral Diphosphine Ligand: A Polymer with Both Au···Ag and Ag···Ag Metallophilic Bonds

Craig A. Wheaton, Michael C. Jennings, and Richard J. Puddephatt

Department of Chemistry, University of Western Ontario, London, Canada N6A 5B7

Reprint requests to Dr. R. J. Puddephatt. E-mail: pudd@uwo.ca

Z. Naturforsch. 2009, 64b, 1469 - 1477; received August 14, 2009

Dedicated to Professor Hubert Schmidbaur, the grand master of gold chemistry, on the occasion of his 75th birthday

The chemistry of gold(I) with the ligand binap = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl is reported. Reaction of [Au₂Cl₂(μ -binap)] with silver trifluoroacetate gave the corresponding complex [Au₂(O₂CCF₃)₂(μ -binap)], and crystallization in the presence of excess silver trifluoroacetate gave the unusual syndiotactic polymeric complex [{Au₂Ag₂(μ -O₂CCF₃)₄(μ -binap)]_n], which contains both Au···Ag and Ag···Ag metallophilic bonds. The trifluoroacetate ligands in [Au₂(O₂CCF₃)₂(μ -binap)] can be replaced by nitrogen or phosphorus donor ligands to give complexes [Au₂(κ ¹-4,4'-bipyridine)₂(μ -binap)](CF₃CO₂)₂ or *meso*-[Au₂(μ -binap)₂](CF₃CO₂)₂.

Key words: Gold, Diphosphine, Chiral, Aurophilic, Polymer

Introduction

The synthesis and characterization of chiral complexes of gold is a topical subject [1], based on applications in asymmetric catalysis [2, 3], chiral nanoparticles and clusters [4], and stereoregular molecular materials [5]. In studying stereoselective self-assembly of polymeric and oligomeric gold(I) complexes, several complexes of gold(I) both with the ligand binap = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl were prepared and structurally characterized. The ligand binap has been used extensively in catalysis but less often in materials chemistry [2-6]; it usually acts as a chelate [6] but, in its known complexes with gold(I), it acts as a bridging ligand [3,5]. Thus it had promise for extending studies of coordination macrocycles and polymers of gold(I) by forming chiral derivatives [5, 7, 8]. One of the complexes described below is a mixed gold(I)-silver(I) complex which contains both Au···Ag and Ag···Ag metallophilic bonds in a syndiotactic polymer. The field of metallophilic bonding has been pioneered by the experimental research of Schmidbaur and by the theoretical work of Pyykkö [9], while Schmidbaur has also discovered interesting examples of Au···Ag metallophilic bonds [10] and general interest in metalophilic bonding continues to grow [1, 9-13].

Results and Discussion

Synthesis of gold(I) complexes of binap

Some of the synthetic procedures are illustrated in Scheme 1. The complex $[Au_2Cl_2(\mu-binap)]$, 1, was readily prepared by displacement of dimethylsulfide from $[AuCl(SMe_2)]$ by the phosphorus donors of the binap ligand, by analogy with the method established with other diphosphine ligands [7,8]. The complexes 1a and 1b were prepared by using either S-binap or rac-binap as ligand. It is noted that the corresponding complex 1c, with R-binap, has been prepared independently by a different route [3]. Reaction of 1b with silver trifluoroacetate gave insoluble silver chloride and the corresponding digold(I) trifluoroacetate complex 2. The trifluoroacetate ligands in 2 are bound sufficiently strongly to give a stable complex, but sufficiently weakly that they can be displaced by 4,4'bipyridine to give the complex $[Au_2(\kappa^1-4,4'-bipy)_2(\mu$ binap)](CF₃CO₂)₂, **3**. Finally, reaction of **2** with racbinap gave crystals of the complex meso-[Au₂(µbinap)2](CF3CO2)2, 4a. Most of the complexes gave singlet resonances in the ³¹P NMR spectra (δ (³¹P) = 24.71, 18.41, and 18.45 in **1**, **2** and **3**, respectively), but complex 4 gave two broader resonances at $\delta(^{31}P)$ = 41.2 and 43.1 in relative ratio 1.5:1. The product of the similar reaction using S-binap gave only the reso-

0932-0776 / 09 / 1100-1469 \$ 06.00 © 2009 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

Scheme 1. $(P = PPh_2)$.

nance at $\delta(^{31}P) = 43.1$, so this resonance is assigned to the *S,S* isomer **4c**. Statistically, the reaction using *rac*-binap would give **4a**: **4b**: **4c** = 2:1:1 and, because **4b** and **4c** will have identical NMR spectra, this would lead to the presence of two equal-intensity resonances. The observed intensity ratio of 1.5:1 for **4a**: **4b** + **4c** indicates a modest selectivity for the *meso*-**4a** over *racemic*-**4b** + **4c**. Crystallization gave only **4a**.

Structures of binap complexes of gold(I)

The structure of the chiral gold(I) complex 1a, prepared from S-binap and [AuCl(SMe2)], is shown in Fig. 1. The asymmetric unit contains only half of the molecule, with the symmetrically equivalent half generated by a C2 rotation. Therefore the two AuCl vectors are oriented away from each other in an anti conformation. As expected, the gold(I) coordination geometry is approximately linear, with the bond angle P-Au-N = $175.2(1)^{\circ}$. The binaphthyl torsion angle $C(2)C(1)C(1A)C(2A) = 98.4(3)^{\circ}$, only slightly distorted from orthogonality. The molecule contains no gold...gold interactions, with an intramolecular contact of 5.42 Å and shortest intermolecular separation of 8.63 Å. The most significant intermolecular contact is a C-H $\cdots \pi$ interaction involving a C(4)-H(4) unit of each naphthalene ring acting as a donor to a phenyl

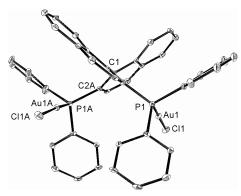


Fig. 1. The structure of complex **1a**. Hydrogen atoms and a dichloromethane molecule are excluded for clarity. Selected bond parameters (Å, deg): Au(1)–Cl(1) 2.282(3), Au(1)–P(1) 2.227(3); P(1)–Au(1)–Cl(1) 175.2(1). Symmetry equivalent half molecules: x, y, z; 1-x, y, 1-z.

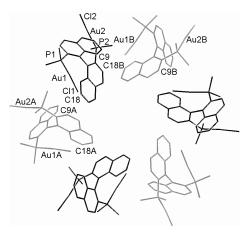


Fig. 2. The supramolecular hexameric structure of complex **1b**. Only the *ipso* carbon atoms of phenyl groups are shown, and solvent molecules and hydrogen atoms are omitted for clarity. Selected bond lengths and angles (Å, deg): Au(1)–Cl(1) 2.299(2), Au(1)–P(1) 2.235(2), Au(2)–Cl(2) 2.277(3), Au(2)–P(2) 2.232(2); P(1)–Au(1)–Cl(1) 176.64(9), P(2)–Au(2)–Cl(2) 174.77(10).

ring of the neighboring molecule, at a distance of approximately 2.6 $\mbox{\normalfont\AA}$.

The structure of **1b** is shown in Fig. 2. In this case, the asymmetric unit contains one full molecule of the complex but otherwise the molecular structure is similar to that of **1a**. The rhombohedral unit cell contains eighteen symmetry-related molecules, with nine molecules of each enantiomer. The coordination geometry at gold(I) is approximately linear, with bond angles $P-Au-Cl = 174.8(1)^{\circ}$ and $176.64(9)^{\circ}$ for Au(2) and Au(1), respectively. No aurophilic interaction is present, with the shortest $Au\cdots Au$ con-

tact being the intramolecular distance $Au(1) \cdots Au(2) =$ 5.48 Å. Through significant C–H $\cdots \pi$ stacking interactions, in which one naphthalene ring of each molecule acts as a donor as well as an acceptor, the molecules are organized in groups of six into large ring structures (Fig. 2). The main intermolecular interaction involves the $C(9)H(9)\cdots\pi$ interaction between naphthyl groups, with a contact distance of approximately 2.9 Å. The hexamer in Fig. 2 contains 3 molecules of each enantiomer with alternating chirality RSRSRS. These rings stack directly on top of one another, creating a small channel which is occupied by disordered solvent molecules. This remarkable difference between the crystal packing of 1a and 1b is an excellent example of chirality-directed self-assembly, showing how supramolecular structures can be significantly altered by variation of only the chiral features of the components [14].

The structure of complex 2c, prepared by reaction of 1b with silver trifluoroacetate, is depicted in Fig. 3. The asymmetric unit contains two similar but independent molecules of the complex. Each molecule is chiral, but a crystallographic center of inversion generates the molecules of opposite chirality, thus giving a racemic mixture within the crystal. The molecular structure is similar to the chloride analogs 1a and 1b (Figs. 1 and 2), with approximately linear coordination geometry at gold(I), and with the ligand binaphthyl torsion angle $C(11)C(20)C(40)C(31) = 101^{\circ}$.

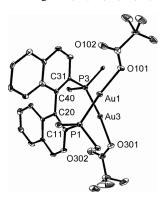


Fig. 3. Molecular structure of one of the two independent molecules of complex **2**. Hydrogen atoms and solvent molecules are omitted and only the *ipso* carbon atoms of the phenyl rings are shown for clarity. Selected bond parameters (Å, deg): Molecule 1: Au(1)–O(101) 2.06(1), Au(1)–P(1) 2.209(5), Au(3)–O(301) 2.09(1), Au(3)–P(3) 2.211(5); O(101)–Au(1)–P(1) 174.0(4), O(301)–Au(3)–P(3) 171.8(4). Molecule 2: Au(2)–O(201) 2.05(1), Au(2)–P(2) 2.220(5), Au(4)–O(401) 2.08(1), Au(4)–P(4) 2.216(5); O(201)–Au(2)–P(2) 177.8(4), O(401)–Au(4)–P(4) 176.3(4).

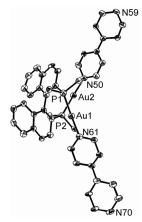


Fig. 4. Structure of the cationic complex **3**. Hydrogen atoms have been omitted, and only the *ipso* carbon atoms of phenyl groups are shown for clarity. Selected bond parameters (Å, deg): Au(1)–N(61) 1.95(3), Au(1)–P(1) 2.174(10), Au(2)–N(50) 1.95(3), Au(2)–P(2) 2.199(9); N(61)–Au(1)–P(1) 174.2(6), N(50)–Au(2)–P(2) 179.0(7).

The intramolecular $Au \cdots Au$ distance, Au(1)Au(3) = 3.966(2) Å, is shorter than analogous distances in **1a** and **1b**, but still outside the range of significant aurophilic attractions.

The structure of complex 3 is shown in Fig. 4. The molecule contains two gold atoms with a bridging binap ligand and with a monodentate 4,4'-bipyridine ligand bound to each gold atom. The coordination at gold(I) is close to the expected linear geometry (P- $Au-N = 174.2(6)^{\circ}$, 179.0(7)°). The trifluoroacetate anions are not bound to gold(I), with the closest approaches being $Au \cdot \cdot \cdot O = 3.56$ and 4.14 Å, and there is no intramolecular $Au \cdots Au$ contact $(Au(1) \cdots Au(2) =$ 4.66 Å). The primary supramolecular interaction is weak face-to-face π - π stacking between the noncoordinated pyridine rings of adjacent molecules with an interaction distance of approximately 3.5 Å. These interactions occur in a head-to-tail fashion between complexes of the same stereochemical configuration, giving loosely associated isotactic sequences. The opposite enantiomers are generated through crystallographic symmetry in the racemic product.

The structure of the complex $[Au_2(\mu-R-binap)(\mu-S-binap)](CF_3CO_2)_2$, **4a**, is shown in Fig. 5. The unit cell contains two similar but independent heterochiral macrocycles, each containing one *R*-binap and one *S*-binap ligand. There is a strong intramolecular aurophilic interaction, with the distance $Au(1)\cdots Au(2) = 2.8700(4)$ Å in one macrocycle and $Au(3)\cdots Au(4) = 2.9125(4)$ Å in the other. The close $Au\cdots Au$ ap-

Scheme 2. $P = PPh_2$, $R = CF_3$.

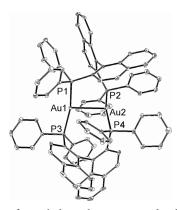


Fig. 5. One of two independent macrocycles in the structure of **4a**. Hydrogen atoms, anions and solvent molecules are omitted for clarity. Selected bond parameters (Å, deg): Molecule 1: Au(1)–P(1) 2.332(2), Au(1)–P(3) 2.328(2), Au(2)–P(2) 2.336(2), Au(2)–P(4) 2.323(2), Au(1)··· Au(2), 2.8700(4); P(1)–Au(1)–P(3) 162.06(7), P(2)–Au(2)–P(4) 163.67(7). Molecule 2: Au(3)–P(5) 2.334(2), Au(3)–P(6) 2.343(2), Au(4)–P(7) 2.319(2), Au(4)–P(8) 2.328(2), Au(3)··· Au(4) 2.9125(4); P(5)–Au(3)–P(6) 163.12(7), P(7)–Au(4)–P(8) 164.52(7).

proaches are accompanied by distortion of the gold(I) centers from linearity, with angles P(1)–Au(1)–P(3) = $162.06(7)^{\circ}$ and P(2)–Au(2)–P(4) = $163.67(7)^{\circ}$. There is no association between the anions and the gold atoms, and there are no notable intermolecular interactions.

A polymer with gold(I)-silver(I) metallophilic interactions

The reaction of complex 2 (Scheme 1) with excess silver trifluoroacetate gave the complex rac-

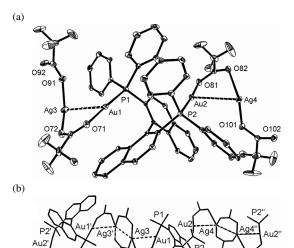


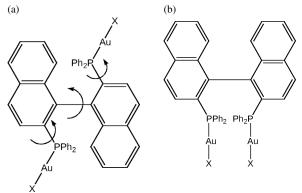
Fig. 6. Structure of the polymeric complex 5: (a) A view of the asymmetric unit; (b) a section of the polymeric chain with fluorine atoms and all but the ipso carbon atoms of phenyl groups omitted for clarity. Selected bond parameters (Å, deg): Au(1)–O(71) 2.058(5), Au(1)–P(1) 2.205(2), Au(1)-Ag(3) 3.2989(9), Au(2)-O(81) 2.066(5), Au(2)-P(2) 2.209(2), Au(2)-Ag(4) 3.0373(8), Ag(3)-O(91) 2.201(6), Ag(3)-O(92A) 2.207(6), Ag(3)-O(72) 2.380(6), Ag(3)-Ag(3A) 2.938(1), Ag(4)–O(101) 2.179(6), Ag(4)–O(102B) 2.191(6), Ag(4)–O(82) 2.500(6), Ag(4)–Ag(4B) 2.973(1); O(71)-Au(1)-P(1) 176.4(2), O(81)-Au(2)-P(2) 175.8(2), O(91)-Ag(3)-O(92A)161.1(2), O(91)-Ag(3)-O(72)101.5(2), O(92A)-Ag(3)-O(72) 96.7(2), Ag(3A)-Ag(3)-O(101)-Ag(4)-O(102B) Au(1)141.23(4), 156.9(2), O(101)-Ag(4)-O(82) 109.5(2), O(102B)-Ag(4)-O(82)93.4(2), Ag(4B)-Ag(4)-Au(2) 147.78(4).

[$\{Au_2Ag_2(O_2CCF_3)_4(\mu\text{-binap})\}_n$], 5 (Scheme 2). The ¹H and ³¹P NMR spectra of 5 were very similar to

Scheme 3. Some complexes with $Au\cdots Ag$ metallophilic bonds.

those of complex 2, indicating that the complex is largely dissociated in solution. The structure of complex 5 was determined and is shown in Fig. 6.

In the structure of complex **5**, there are two non-equivalent $Ag_2(\mu-O_2CCF_3)_2$ units which bridge between molecules of $[Au_2(O_2CCF_3)_2(\mu-binap)]$ by forming, in each case, a weak Ag–O bond to a carbonyl oxygen atom (Ag(3)-O(72)=2.380(6), Ag(4)-O(82)=2.500(6) Å) and a metallophilic $Au\cdots Ag$ bond $(Au(1)-Ag(3)\ 3.2989(9), Au(2)-Ag(4)\ 3.0373(8)$ Å). The gold(I) centers (ignoring the metalmetal interactions) are roughly linear $(O(71)-Au(1)-P(1)=176.4(2), O(81)-Au(2)-P(2)\ 175.8(2)^\circ)$, while the silver(I) centers have highly distorted trigonal or T-shaped coordination (angles O-Ag–O range from $93.4-156.9^\circ)$.


Fig. 6(b) shows that the complex **5** forms a syndiotactic coordination polymer with alternating *RSRS*··· chirality of the binap ligands. It is an unusual compound, in the sense that it is a polymer with both chi-

ral ligands [5] and with metallophilic bonds [11, 13] as part of the backbone. It should be noted that there are several recent examples of complexes in which $Ag_2(\mu-O_2CR)_2$ units form metallophilic bonds to gold(I), as illustrated in Scheme 3 [12, 13]. Complex **5** forms roughly linear $Au \cdots Ag \cdots Ag \cdots Au$ linkages, but complex **6**, in which C-N represents a pyridyl-carbene ligand, forms triangular AuAgAg units, while complex **7**, in which $R = C_6F_5$ and $L = Ph_3P=CH_2$, contains both of the above structural units [13h, 13i].

Discussion

The conformation of the binap ligand can change by rotation about either the central binaphthyl C–C bond or about the phosphorus-carbon bonds, as illustrated in Scheme 4. The binaphthyl torsion angle remains fairly constant at approximately 90° in the complexes studied, as discussed above, so the rotation about the phosphorus-carbon bonds is the most important single factor in determining the conformation. A useful parameter to define the binap conformation in the complexes is the Au–P···P–Au torsion angle, which can vary from 180° to 0° , as illustrated in Scheme 4.

The Au–P···P–Au torsion angles for the complexes 1-5 range from $37-176^{\circ}$, from which it is clear that there is no very large barrier to rotation about the Ph₂P–C bonds. The complexes 1a, 1b, and 5 have the most linear conformations, with Au–P···P–Au = 157, 176 and 172° respectively. Complex 4 has the approximately eclipsed conformation, with Au–P···P–Au ranging from $37-57^{\circ}$, as required for formation of the macrocyclic structure. Complexes 2 and 3 have intermediate values with torsion angles Au–P···P–Au = 110 and 126° , respectively. There are no obvious constraints for the conformations of complexes 1-3 and 5, from which it can be concluded that there is

Scheme 4. Conformations of the binap ligand.

little steric hindrance within the torsion angle range $Au-P\cdots P-Au = 110-176^{\circ}$. Within this range, the gold atoms are well separated and do not form an intramolecular aurophilic interaction, while steric effects of the bulky binap ligands prevent formation of intermolecular Au...Au bonds. In complex 5, the smaller [Ag₂(O₂CCF₃)₂] units are able to form metallophilic bonds of the form $Au \cdots Ag \cdots Ag \cdots Au$. For complex 4, the increase in steric strain in forming the more eclipsed structure must be small enough that it can be balanced by the bond energy gained in forming the aurophilic attraction in the macrocyclic complex. This relative freedom of rotation within the binap ligand may be problematic in the use of complexes such as 2 in chiral catalysis, because the greatest selectivity tends to be observed when the catalyst structure is relatively rigid [2, 3]. However, the preference for the roughly linear conformation is useful in forming polymeric gold(I) complexes from the precursor complex 2 [5].

Experimental Section

NMR spectra were recorded using either a Varian Inova 400 NMR spectrometer or a Varian Mercury 400 NMR spectrometer. ¹H and ¹³C chemical shifts are reported relative to tetramethylsilane (TMS), while ³¹P chemical shifts are reported relative to 85 % H₃PO₄ as an external standard. ESI mass spectra were recorded using a Micromass LCT spectrometer and dichloromethane solutions of the compounds. The ¹H NMR labeling system is shown below for the binap ligand.

 $[Au_2(\mu-R,S-binap)Cl_2], 1b$

A solution of *R*,*S*-binap (0.304 g, 0.488 mmol) in acetone (30 mL) was added to a suspension of [AuCl(SMe₂)] (0.283 g, 0.961 mmol) in acetone (60 mL). The mixture was stirred for two hours to give a white precipitate, which was collected by filtration, washed with acetone, diethyl ether, and pentane, and dried under vacuum. Yield 0.381 g, 73 %. – Anal. for $C_{44}H_{32}Au_2Cl_2P_2$: calcd. C 48.60, H 2.97; found C 48.29, H 2.73. – ¹H NMR (CD₂Cl₂): δ (¹H) = 8.20 (d, 2H, 4-H binap), 7.98 (d, 2H, 5-H binap), 7.65 (d, 2H, o-H Ph), 7.63 (d, 2H, o-H Ph), 7.56 – 7.45 (m, 6H, 3-H binap + 6-H binap + m-H Ph), 7.45 – 7.35 (m, 6H, m-H Ph), 7.26 (d of t, 4H, p-H Ph), 7.19 (d, 2H, o-H Ph), 7.17(d, 2H, o-H Ph), 6.90

(t, 2H, 7-H, binap), 6.66 (d, 2H, 8-H binap). - ³¹P NMR: δ = 24.71 (s)

Complex **1a** was prepared by the same procedure from *S*-binap, giving similar yield and identical ¹H NMR spectra.

$[Au_2(\mu-binap)(CF_3CO_2)_2], 2$

Silver trifluoroacetate (40.6 mg, 0.184 mmol) was added to a suspension of **1b** (100 mg, 0.092 mmol) in dichloromethane (10 mL). The mixture was stirred for 30 min and filtered through celite to remove silver chloride. The solvent was removed, and the compound was purified by reprecipitation from a concentrated dichloromethane solution by addition of pentane. The precipitate was filtered, washed with pentane, and dried under vacuum. Yield 0.102 g, 89 %. – Anal. for C₄₈H₃₂Au₂F₆O₄P₂: calcd. C 46.40; H 2.60; found C 46.08, H 2.45. – ¹H NMR (CD₂Cl₂): δ (¹H) = 8.10 (d, 2H, 4-H binap), 7.97 (d, 2H, 5-H binap), 7.63 (d, 2H, o-H Ph), 7.61 (d, 2H, o-H Ph), 7.57 –7.35 (m, 12H, 3-H binap + 6-H binap + m-H Ph), 7.29 (t, 4H, p-H Ph), 7.19 (d, 2H, o-H Ph), 7.17 (d, 2H, o-H Ph), 7.00 (t, 2H, 7-H, binap), 6.72 (d, 2H, 8-H binap). – ³¹P NMR: δ = 18.41(s).

Complex **5** was prepared similarly, but using silver trifluoroacetate (81.2 mg, 0.368 mmol). Yield: 95 mg, 61 %. – Anal. for $C_{52}H_{32}Ag_2Au_2F_{12}O_8P_2$: calcd. C 37.08, H 1.91; found C 36.75, H 2.14. – NMR data are the same as for **2**.

$[Au_2(\kappa^1-4,4'-bipy)_2(\mu-binap)](CF_3CO_2)_2$, 3

To a solution of 4,4'-bipy (28.7 mg, 0.184 mmol) in CH2Cl2 (10 mL) was added a filtered solution of [Au₂(μ -R,S-binap)(CF₃CO₂)₂] (0.092 mmol), prepared from $[Au_2(\mu-R,S-binap)Cl_2]$ (0.100 g, 0.092 mmol) and AgO₂CCF₃ (0.041 g, 0.184 mmol) in CH₂Cl₂ (10 mL). The solution was stirred for 2 h. The solvent was then removed and the crude product dissolved in a minimum of dichloromethane. The product was precipitated from solution as a white powder by addition of pentane, collected by filtration, washed with diethyl ether and pentane, and dried under vacuum. Yield: 0.0612 g, 42 %. - Anal. for C₆₈H₄₈Au₂P₂N₄O₄F₆: calcd. C 52.52, H 3.11, N 3.60; found C 52.11, H 2.85, N 3.53. - 1H NMR (CD₂Cl₂ + CD₃OD): $\delta(^{1}\text{H}) = 8.69 \text{ (s, 8H, } o\text{-H py), } 8.08 \text{ (d, 2H, 4-H bi-}$ nap), 7.93 (d, 2H, 5-H binap), 7.63 (d, 2H, o-H Ph), 7.62 (d, 2H, o-H Ph), 7.57 (d, 8H, m-H py), 7.52 – 7.42 (m, 6H, 3-H binap + 6-H binap + m-H Ph), 7.38 (t, 6H, m-H Ph), 7.22 (m, 4H, p-H Ph), 7.16 (d, 2H, o-H Ph), 7.14 (d, 2H, o-H Ph), 6.96 (t, 2H, 7-H, binap), 6.68 (d, 2H, 8-H binap). - ³¹P NMR: δ = 18.45 (s).

$[Au_2(\mu-binap)_2](CF_3CO_2)_2, 4$

To a solution of $[Au_2(\mu-R,S-binap)(CF_3CO_2)_2]$ (0.092 mmol) in tetrahydrofuran was added 58.5 mg (0.092 mmol)

Table 1. Crystallographic data for the complexes.

Complex	1a·CH ₂ Cl ₂	1b ·0.93 (CH ₃) ₂ SO	2.0.5 CH ₂ Cl ₂	3 ⋅3 CH ₂ Cl ₂	4·0.74 CH ₂ Cl ₂	5 ·1.5 CH ₂ Cl ₂
Formula	C55H42Au2Cl4P2	C _{45.86} H _{37.58} Au ₂ -	C _{48.5} H ₃₃ Au ₂ -	C ₇₁ H ₅₄ Au ₂ -	C _{92.74} H _{66.2} Au ₂ -	C _{53.5} H ₃₅ Ag ₂ Au ₂ -
		$Cl_2O_{0.93}P_2S_{0.93}$	ClF ₆ O ₄ P ₂	$Cl_6F_6N_4O_4P_2$	$Cl_{1.48}F_6O_4P_4$	$Cl_3F_{12}O_8P_2$
$M_{\rm r}$	1170.38	1160.18	1285.07	1809.80	1928.91	1811.78
<i>T</i> , K	150	150	150	150	150	150
λ, Å	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	monoclinic	rhombohedral	triclinic	monoclinic	triclinic	triclinic
Space group	C2	$R\bar{3}$	$P\bar{1}$	$P2_1/n$	$P\bar{1}$	$P\bar{1}$
a, Å	19.5457(8)	30.199(1)	11.9800(4)	16.853(8)	14.7650(3)	13.5887(5)
b, Å	8.6328(3)	30.199(1)	15.5702(6)	22.64(1)	22.7024(5)	14.1199(5)
c, Å	14.0179(5)	28.2091(9)	24.4784(9)	18.407(7)	23.3878(5)	15.7540(6)
α , deg	90	90	74.579(2)	90	88.9490(8)	85.894(2)
β , deg	122.112(2)	90	89.400(2)	114.03(3)	89.6320(8)	86.299(2)
γ, deg	90	120	74.197(2)	90	79.0320(9)	66.574(2)
γ , deg V , \mathring{A}^3	2003.4(1)	22279(1)	4225.8(3)	6414(2)	7695.1(3)	2764.3(2)
Z	2	18	4	4	4	2
$D_{\rm calc}$, Mg m ⁻³	1.94	1.46	2.02	1.83	1.65	2.18
μ , mm ⁻¹	7.7	6.1	7.1	4.9	4.0	6.3
Data/restr./param.	3328/1/241	8631/0/403	14616/1045/1043	5766/1353/801	26578/3384/1786	9724/677/710
x (Flack)	0.14(2)	_	_	_	_	_
$R1/wR2$ [$I \ge 2\sigma(I)$]	0.0408/0.1085	0.0542/0.1284	0.0781/0.1988	0.0938/0.2617	0.0500/0.1247	0.0440/0.0950
R1/wR2 (all data)	0.0421/0.1099	0.0804/0.1388	0.1143/0.2164	0.1895/0.3129	0.0633/0.1308	0.0748/0.1054
$\Delta \rho_{\rm fin} ({\rm max/min}),$	3.56/-2.33	0.76/-1.83	3.42/-2.61	1.25 / -1.44	1.77/-2.52	1.86/-1.44
$e Å^{-3}$						

of *R*,*S*-binap. The solution was stirred for 2 h. The solvent was removed and the crude product dissolved in a minimum of dichloromethane. The product was precipitated from solution as a white powder by addition of pentane, collected by filtration, washed with diethyl ether and pentane, and dried under vacuum. Yield: 0.172 g, 96 %. – Anal. for $C_{92}H_{64}Au_2F_6O_4P_4$: calcd. C 59.24, H 3.46; found C 58.98, H 3.54. – ³¹P NMR (CD₂Cl₂): δ = 41.16 (s); 43.07 (s, broad). Single crystals of **4a** were grown by slow diffusion of *n*-hexane into a dichloromethane solution of the compound.

X-Ray structure determinations

Data were collected at low temperature (-123 °C) with a Nonius Kappa-CCD area detector diffractometer using CoL-LECT [15] software, with Mo K_{α} radiation ($\lambda = 0.71073 \text{ Å}$). The unit cell parameters were calculated and refined from the full data set. Crystal cell refinement and data reduction were carried out using HKL2000 DENZO-SMN [16]. The absorption correction was applied using HKL2000 DENZO-SMN (SCALEPACK) [16]. The SHELXTL [17] software package was used to solve the structures by Direct Methods, with subsequent refinement carried out using successive difference Fouriers. All hydrogen atoms were calculated geometrically as riding on their respective carbon atoms. Crystal data are summarized in Table 1, and further details of the structures can be found in the CIF files CCDC 743981-743986 deposited with The Cambridge Crystallographic Data Centre. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

$[Au_2(\mu-S-binap)Cl_2]$, **1a**

Crystals of **1a** were grown by slow diffusion of pentane into a dichloromethane solution of the compound. The asymmetric unit contains only one half of a structural unit of the compound, the other being related by symmetry.

[$Au_2(\mu-binap)Cl_2$], **1b**

Crystals of **1b** crystallized from a dimethylsulfoxide (DMSO) solution of the compound. Voids in the lattice were filled with disordered molecules of DMSO. The SQEEZE procedure of the PLATON suite of programs [18] was used to account for this solvent electron density. A total of 701.7 electrons were removed in a volume of 7299.9 Å³ (32.8 % of the unit cell). These electrons are assigned to 16.7 molecules of dimethylsulfoxide (This equates to 0.93 DMSO molecules per asymmetric unit). The SQUEEZE-processed data were used for all subsequent refinement cycles.

$[Au_2(\mu-binap)(CF_3CO_2)_2], 2$

Crystals of **2** were grown by slow diffusion of pentane into a dichloromethane solution of the compound. There are two distinct molecules in the asymmetric unit, and a solvent CH₂Cl₂ molecule, which was restrained to have equal C–Cl distances.

$$[Au_2(\kappa^1-4,4'-bipy)_2(\mu-binap)](CF_3CO_2)_2, 3$$

Crystals of 3 were grown by slow diffusion of pentane into a dichloromethane solution. The CH₂Cl₂ molecules of

solvation were restrained to have C-Cl = 1.65 Å, and phenyl groups were restrained to be ideal hexagons.

 $meso-[Au_2(\mu-R-binap)(\mu-S-binap)](CF_3CO_2)_2$, 4a

Crystals of **4a** were grown by slow diffusion of *n*-hexane into a concentrated dichloromethane solution of the compound **4**. The asymmetric unit contains two similar but independent macrocyclic structures. Two of the four trifluoroacetate anions were disordered in which the -CO₂ group was modeled over two sites, one at 50:50 and the other at 60:40 occupancy. All atoms of the macrocycles were modeled anisotropically with the exception of C144. Several anion and solvent atoms were also not modeled anisotropically, including O304, O401, C404, F405, and C700. A single small void in the lattice was assumed to be filled with disordered dichloromethane solvent, and was accounted for using the SQUEEZE procedure of the PLATON suite of pro-

grams [18]. A total of 40.4 electrons were removed from a volume of 159.7 Å 3 (2.1 % of the unit cell). These electrons are assigned to 0.96 molecules of dichloromethane. The SQUEEZE-processed date were used for all subsequent refinement cycles.

 $[Au_2Ag_2(\mu-O_2CCF_3)_4(\mu-R,S-binap)], 5$

Crystals of $[Au_2Ag_2(\mu-O_2CCF_3)_4(\mu-R,S-binap)]\cdot 1.5-$ CH₂Cl₂ were grown from a concentrated dichloromethane chloride solution of **2** containing excess silver trifluoroacetate by slow diffusion of pentane. The C–Cl and Cl–Cl distances of the CH₂Cl₂ molecules were fixed.

Acknowledgement

We thank the NSERC (Canada) for financial support and for a scholarship to C. A. W.

- [1] a) A. Laguna (Ed.), Modern Supramolecular Gold Chemistry. Gold-Metal Interactions and Applications, Wiley-VCH, Weinheim, 2008; b) F. Mohr (Ed.), Gold Chemistry: Applications and Future Directions in the Life Sciences, Wiley, Chichester, 2009; c) G. J. Hutchings, M. Brust, H. Schmidbaur, Chem. Soc. Rev. 2008, 1759; d) H. Schmidbaur (Ed.), Gold: Progress in Chemistry, Biochemistry and Technology, Wiley, Chichester, 1999.
- [2] a) R. A. Widenhoefer, *Chem. Eur. J.* 2008, 14, 5382;
 b) D. J. Gorin, B. D. Sherry, F. D. Toste, *Chem. Rev.* 2008, 108, 3351;
 c) A. S. K. Hashmi, *Chem. Rev.* 2007, 107, 3180.
- [3] M. P. Munoz, J. Adrio, J. C. Carretero, A. M. Echavarran, *Organometallics* 2005, 24, 1293.
- [4] a) Y. Yanagimoto, Y. Negishi, H. Fujihara, T. Tsukuda, J. Phys. Chem. B 2006, 110, 11611; b) M. Tamura, H. Fujihara, J. Am. Chem. Soc. 2003, 125, 15742.
- [5] a) C. A. Wheaton, R. J. Puddephatt, Angew. Chem.
 2007, 119, 4545; Angew. Chem., Int. Ed. 2007, 46, 4461; b) C. A. Wheaton, D. J. Eisler, M. C. Jennings, R. J. Puddephatt, J. Am. Chem. Soc. 2006, 126, 15370.
- [6] R. Noyori, Angew. Chem. 2002, 114, 2108; Angew. Chem. Int. Ed. 2002, 41, 2008.
- [7] a) C. P. McArdle, M. J. Irwin, M. C. Jennings, R. J. Puddephatt, Angew. Chem. 1999, 111, 3571; Angew. Chem. Int. Ed. 1999, 38, 3376; b) C. P. McArdle, S. Van, M. C. Jennings, R. J. Puddephatt, J. Am. Chem. Soc. 2002, 124, 3959; c) C. P. McArdle, J. J. Vittal, R. J. Puddephatt, Angew. Chem. 2000, 112, 3977; Angew. Chem. Int. Ed. 2000, 39, 3819; d) N. C. Habermehl, D. J. Eisler, C. W. Kirby, N. L.-S. Yue, R. J. Puddephatt, Organometallics 2006, 25, 2921; e) M. C. Brandys, M. C. Jennings, R. J. Puddephatt, Dalton Trans. 2000,

- 4601; f) W. Xu, J. P. Rourke, J. J. Vittal, R. J. Puddephatt, *J. Chem. Soc.*, *Chem. Comm.* **1993**, 145.
- [8] a) M.J. Irwin, J.J. Vittal, G.P.A. Yap, R.J. Puddephatt, J. Am. Chem. Soc. 1996, 118, 13101;
 b) G.C. Jia, N.C. Payne, J.J. Vittal, R.J. Puddephatt, Organometallics 1993, 12, 4771;
 c) G.C. Jia, R.J. Puddephatt, J.J. Vittal, N.C. Payne, Organometallics 1993, 12, 263;
 d) M.C. Brandys, R.J. Puddephatt, J. Am. Chem. Soc. 2001, 123, 4839;
 e) T.J. Burchell, D.J. Eisler, R.J. Puddephatt, Chem. Commun. 2004, 944.
- [9] a) H. Schmidbaur, A. Schier, Chem. Soc. Rev. 2008, 1931; b) P. Pyykkö, Chem. Soc. Rev. 2008, 1967.
- [10] a) O. Schuster, U. Monkowius, H. Schmidbaur, R. S. Ray, S. Krüger, N. Rösch, *Organometallics* **2006**, *25*, 1004; b) B. Djordjevic, O. Schuster, H. Schmidbaur, *Inorg. Chem.* **2005**, *44*, 673.
- [11] a) S.-Y. Yu, Z.-X. Zhang, E. C.-C. Cheng, Y.-Z. Li, V. W.-W. Yam, H.-P. Huang, R. Zhang, J. Am. Chem. Soc. 2005, 127, 17994; b) J. H. K. Yip, R. Feng, J. J. Vittal, Inorg. Chem. 1999, 38, 3586; c) A. Bauer, H. Schmidbaur, J. Am. Chem. Soc. 1996, 118, 5324; d) M. Stender, R. L. White-Morris, M. M. Olmstead, A. L. Balch, Inorg. Chem. 2003, 42, 4504; e) O. Elbjeirami, S. Yockel, C. F. Campana, A. K. Wilson, M. A. Omary, Organometallics 2007, 26, 2550; f) O. Elbjeirami, M. A. Omary, J. Am. Chem. Soc. 2007, 129, 11384.
- [12] Y. Sun, B. Ross, R.-Y. Wang, S. Wang, Can. J. Chem. 2009, 87, 188.
- [13] a) V.J. Catalano, M.A. Malwitz, A.O. Etogo, *Inorg. Chem.* **2004**, *43*, 5714; b) V.J. Catalano, A.O. Etogo, *J. Organomet. Chem.* **2004**, *690*, 6041; c) E.J. Fernandez, P.G. Jones, A. Laguna, J.M. Lopez-de-

Luzuriaga, M. Monge, M.E. Olmos, R.C. Puelles, Organometallics 2007, 26, 5931; d) E.J. Fernandez, A. Laguna, J.M. Lopez-de-Luzuriaga, Dalton Trans. 2007, 1969; e) E.J. Fernandez, M.C. Gimeno, A. Laguna, J.M. Lopez-de-Luzuriaga, M. Monge, P. Pyykkö, D. Sundholm, J. Am. Chem. Soc. 2000, 122, 7287; f) E. J. Fernandez, J. M. Lopez-de-Luzuriaga, M. Monge, M.E. Olmos, R.C. Puelles, A. Laguna, A. A. Mohamed, J. P. Fackler, Jr., Inorg. Chem. 2008, 47, 8069; g) Z. N. Chen, N. Zhao, Y. Fan, J. Ni, Coord. Chem. Rev. 2009, 253, 1; h) A.K. Ghosh, V.J. Catalano, Eur. J. Inorg. Chem. 2009, 1832; i) E.J. Fernandez, C. Hardacre, A. Laguna, M. C. Lagunas, J. M. Lopez-de-Luzuriaga, M. Monge, M. Montiel, M. E. Olmos, R. C. Puelles, Chem. Eur. J. 2009, 15, 6222.

- [14] P. W. N. M. van Leeuwen, Supramolecular Catalysis, Wiley-VCH, Weinheim, 2008.
- [15] R. Hooft, COLLECT, Nonius KappaCCD Software, Nonius BV, Delft (The Netherlands) 1997.
- [16] HKL DENZO, SCALEPACK, Z. Otwinowski, W. Minor, in *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A (Eds.: C. W. Carter, Jr., R. M. Sweet), Academic Press, New York, **1997**, pp. 307.
- [17] G. M. Sheldrick, SHELXTL (version 6.1), Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin (USA) 2001. See also: G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
- [18] A. L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht (The Netherlands) 2000. See also: A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7.